International Journal of Computer Discovered Mathematics
Published by the VUZF University of Finance, Business and Entrepreneurship,
Sofia, Bulgaria
About this Journal
| Editorial Board
| Instructions for Authors
| Review Process
| Links
The first journal devoted to mathematics discovered by computers
ISSN 2367-7775
Editors-in-Chief:
Sava Grozdev, Professor, DSc,
VUZF University of Finance, Business and Entrepreneurship, Sofia, Bulgaria
e-mail: sava.grozdev@gmail.com
Hiroshi Okumura, Professor, Ph.D.
Maebashi Gunma, 371-0123, Japan
e-mail: hokmr@yandex.com
Deko Dekov, Assoc. Professor, PhD, Zahari Knjazheski 81, 6000 Stara Zagora, Bulgaria
e-mail: ddekov@ddekov.eu
Volume 4 (2019)
|
Dao Thanh Oai,
Some Problems Around the Configuration
of Eight Circles, pp.1-12.
|
|
Dao Thanh Oai,
Four Proofs of the Generalization of the Simson Line, pp.13-17.
|
|
Todor Zaharinov,
Inscribed Conics and the Darboux Cubic, pp.18-26.
|
|
Todor Zaharinov,
Inscribed triangles with centroid in a given point, pp.27-35.
|
|
Todor Zaharinov,
Sums With Square Distances Between a Point and Vertexes, pp.36-47.
|
Volume 3 (2018)
|
Nguyen Chuong Chi,
A Proof of Dao’s Generalization of the Sawayama Lemma, pp.1-4.
|
|
Nguyen Ngoc Giang,
Creation of new theorems from flanks, pp.5-36.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Triangles Homothetic with the Extouch Triangle, pp.37-43.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Intangents Triangle, pp.44-48.
|
|
Nguyen Ngoc Giang,
A New Proof and Some Generalizations of the Bottema Theorem, pp.49-54.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Problems for Students about Intouch Triangle, pp.55-61.
|
|
Abdilkadir Altintas and Ercole Suppa,
Extended Soddy Configurations, pp.62-68.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
A New Proof of the Feuerbach theorem, pp.69-70.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
The Paskalev-Tchobanov Distance Formula and Some of its Applications, pp.71-73.
|
|
Nguyen Ngoc Giang,
Using the affine and projective methods to prove and extend Dao's theorem, pp.74-81.
|
|
Nguyen Ngoc Giang and Le Viet An,
An Extension of the Steiner Line Theorem and Application, pp.82-87.
|
|
Dao Thanh Oai,
Some Equilateral Triangles Perspective to the Reference Triangle ABC, pp.88-96.
|
|
Nguyen Ngoc Giang and Le Viet An,
An Another Proof of Dao’s Theorem and its Converses, pp.97-103.
|
|
Dao Thanh Oai,
An Ellipse Through 12 Points and Golden Triangle, pp.104-109.
|
|
Nguyen Ngoc Giang and Le Viet An,
Three extentions of Kosnita's theorem, pp.110-117.
|
|
Glenn C. Rhoads,
Planar Tilings by Substitution Polykleins, pp.118-135.
|
|
Nguyen Ngoc Giang and Dao Thanh Oai,
Six Conics Theorem, pp.136-139.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
A Note on the Tangential triangle, pp.140-142.
|
|
Dao Thanh Oai,
A Problem On Three Homothetic Centers Associated With A Convex Hexagon, pp.143-144.
|
|
Tran Minh Ngoc,
A Purely Synthetic Proof of Dao’s Theorem On A Conic And Its Applications, pp.145-152.
|
Volume 2 (2017)
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: Euler Anticevian Triangles, pp.1-29.
Supplementary Material. Euler Anticevian Triangles.zip
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
A Note on the Leversha Point, pp.30-34.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: Incentral Triangle, pp.35-45.
Supplementary Material. Incentral triangle.zip
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: Triangles homothetic with the Orthic triangle, pp.46-54.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: Half-Anticevian Triangle of the Incenter, pp.55-71.
Supplementary Material - Half-Anticevian Triangle of the Incenter.zip
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: Excenters-Incenter Reflections Triangle, pp.72-80.
Supplementary Material - Excenters-Incenter Reflections Triangle
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: Problems about Points on the Euler line, pp.81-85.
Supplementary Material - Points on the Euler line
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Triangles Homothetic with Triangle ABC, pp.86-89
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Triangles Homothetic with Triangle ABC. Part 2, pp.90-96
Supplementary Material - HT2.zip
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Triangles Homothetic with Triangle ABC. Part 3, pp.97-105.
Supplementary Material - HT3.zip
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics:
Triangles Associated with Triangulation Triangles, pp.106-110.
Supplementary Material - Triangulation Triangles.zip
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Leversha Triangles and Leversha Points, pp.111-116.
Supplementary Material - Leversha Points.zip
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Notable Circles, pp.117-134.
Supplementary Material - Notable Circles.zip
|
|
Nguyen Ngoc Giang,
Some properties of triangles or rectangles
attached to sides of a triangle, pp.135-140.
|
|
Nguyen Trung Kien,
An Iterative Geometrical Approach for a Problem
in the International Mathematical Olympiad 2017, pp.141-145.
|
|
Nguyen Ngoc Giang,
Flanks, new flanks, generalized flanks and their properties, pp.146-184.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: Problems for Students about Excentral Triangle, pp.185-200.
Supplementary material - Excentral triangle
|
|
Nguyen Ngoc Giang,
The relation between three concurrent diagonals of a hexagon
and rectangles attached to sides of a triangle, pp.201-207.
|
Volume 1 Number 1 (2016)
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Euler Triangles, pp.1-10.
Supplementary Material: Euler_Triangles.zip
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Circles Containing the Parry Point, pp.11-14.
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Lester Circles, pp.15-25.
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: The Incenter, pp.26-35.
|
|
Francisco Javier García Capitán,
Posing and Solving Problems with Barycentric Coordinates, pp.36-44.
|
|
René Grothmann,
The Geometry Program C.a.R., pp.45-61.
Supplementary Material: Grothmann-CaR.zip
|
|
René Grothmann,
Discover Euler Math Toolbox, pp.62-75.
|
|
Dao Thanh Oai,
A generalization of the Zeeman-Gossard perspector theorem, pp.76-79.
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Dividing Directed Segments, pp.80-88.
Supplementary Material: division.zip
|
|
S. Grozdev and D. Dekov,
Mathematics Discovered by Computers: Incenters of Triangles, pp.89-92.
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Circles through the Feuerbach Point, pp.93-96.
|
Volume 1 Number 2 (2016)
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Half-Cevian Triangles, pp.1-8.
Supplementary Material: Half-Cevian-Triangles.zip
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: The Mittenpunkt, pp.9-13
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Gibert Triangles, pp.14-20.
Supplementary Material: Gibert-Triangles.zip
|
|
Dao Thanh Oai, The Nine Circles Problem and the Sixteen Points Circle,
pp.21-24.
|
|
Ngo Quang Duong, Generalizations of some triangle geometry results associated with cubics,
pp.25-39.
|
|
Ngo Quang Duong, Some problems around the Dao's theorem on six circumcenters
associated with a cyclic hexagon configuration, pp.40-47.
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Fuhrmann Triangles, pp.48-58.
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Harmonic Conjugates, pp.59-63.
Supplementary Material: Harmonic Conjugates.zip
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Inversion of Triangle ABC with respect to the Incircle, pp.64-74.
Supplementary Material: Inversion of ABC wrt the Incircle.zip
|
|
S. Grozdev and D. Dekov,
Barycentric Coordinates: Formula Sheet, pp.75-82.
|
|
Mamut Sirazitdinov, Proofs of computer discovered theorems about Yiu Transform, pp.83-89.
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: A Note on the Johnson Circles, pp.90-95.
Supplementary Material: Johnson Circles.zip
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Yff Triangles, pp.96-103.
Supplementary Material: Yff Triangles.zip
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: A Note on the Gossard Triangles, pp.104-108.
Supplementary Material: Gossard Triangle.zip
|
Volume 1 Number 3 (2016)
|
Frank M. Jackson and Stalislav Takhaev,
Heronian Triangles of Class J: Congruent Incircles Cevian Perspective, pp.1-8.
|
|
Nguyen Trung Kien and Tran Thu Le,
Problem of Twelve Circles, pp.9-12.
|
|
Dao Thanh Oai,
Generalizations of some famous classical Euclidean geometry theorems, pp.12-20.
|
|
Nguyen Ngoc Giang,
The extension from a circle to a conic having center: The creative method of new theorems, pp.21-32.
|
|
Dao Thanh Oai,
A Generalization of Sawayama and Thébault's Theorem, pp.33-35.
|
|
Dao Thanh Oai,
Another Generalization of the Sawayama and Thébault's Theorem, pp.36-39.
|
|
Sava Grozdev and Deko Dekov,
Computer Discovered Mathematics: Stanilov Triangles, pp.40-44.
Supplementary Material: Stanilov Triangles.zip
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: A Note on the Miquel Points, pp.45-49.
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: Orthopoles, pp.50-56
|
|
Sava Grozdev, Hiroshi Okumura and Deko Dekov,
Computer Discovered Mathematics: Haimov Triangle of the Incenter, pp.57-61
|
Volume 1 Number 4 (2016)
Volume 0 (2015)
|
Welcome!, p.1.
|
|
Advertisements, p.2.
|
|
S. Grozdev and D. Dekov,
A Survey of Mathematics Discovered by Computers, pp.3-20.
|
|
Paul Yiu,
Iterations of sum of powers of digits, pp.21-26.
|
|
Paul Yiu,
Collinearity of the reflections of the intercepts of
a line in the angle bisectors of a triangle pp.27-31.
|
|
Francisco Javier García Capitán,
Barycentric Coordinates, pp.32-48.
|
|
A. G. Koryanov,
The computer program "Inverse Matrices", pp.49-53.
|
|
Stefka Karakoleva,
Make your first steps in the high-quality
typesetting system LaTeX, pp.54-59.
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Hexyl-Anticevian Triangles, pp.60-69.
|
|
S. Grozdev and D. Dekov,
Computer Discovered Mathematics: Haimov Triangles, pp.70-79.
Supplementary Material: Haimov_Points.zip
|
|